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Abstract. Zeta-function regularisation (of functional determinants) is used to derive the 
exact high-temperature expansions of the thermodynamic potentials for the ideal massive 
Bose and Fermi gases for non-zero chemical potential. The purpose is to show agreement 
with the results obtained by the Mellin transform method, and by the method of zeta- 
function regularisation of infinite series. The generalised zeta functions calculated are the 
simplest examples of Feynman diagram zeta functions. The extension of these calculations 
to Euclidean manifolds M x E ”  more complicated than the finite-temperature cylinder 
S’ x E ”  is discussed. 

1.  Introduction 

The thermodynamic potentials for the massive ideal Bose and Fermi gases -fl& M ,  p )  
where M ,  p are mass and chemical potential-are complicated functions [ 1-71 whose 
exact power series expansions have only recently been obtained. Haber and Weldon 
[4,6] and Braden [7] first derived these series, using a Mellin transformation method. 
Subsequently, the author [8,9] calculated the high- T series for flR,F( M ,  p )  in a different 
way, using 5 functions to rearrange a Dirichlet-type infinite series representing the 
thermodynamic potential into the high-T power series form. (One distinctive term in 
OB,  but none in OF,  appeared to be missed by this calculation. Weldon [lo] pointed 
out that this term does in fact arise in  the {-function calculation through the commuta- 
tion of infinite series. See also [ 111.) More recently, a slight discrepancy between the 
Mellin transform result for a,( M ,  p )  [7] and  the {-function result [9] was resolved 
in favour of the latter by Landsmann and van Weer: [12], who repeated the Mellin 
transform calculation (see also 0 2 below). Thus, there presently exist two quite different 
calculations of the high- T series for 

One purpose of this article is to give a third derivation of these high-T series for 
the interesting case of even spacetime dimension. Straightforward {-function regulari- 
sation of In de t ( -D2+M’)  will be used. Up to a single term, exactly the same 
double-infinite series is found. An arbitrary scaling constant in the { function gets 
transferred to the numerical coefficient of this one term, which consequently must be 
‘fit’ by comparison with the corresponding term in the known series. Every other term 
in the latter is precisely reproduced in a simple way. In the relatively trivial [ 131 case 
of zero mass, the scaling constant does not enter into the high-T series. 

In  a sense the true subject of the present paper is the 5-function method itself, 
rather than thermodynamic potentials. We calculate from the {-functions ZB,F( s) 

M ,  p ) ,  and the results agree perfectly. 
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associated with the operator - D 2 +  M 2  on the Euclidean spacetime cylinder SI x E " .  
To be able to d o  this, we first calculate the high-T expansions of the i-functions 
ZB,F(s). Then, from the prescription [ 141 In det(operator) = - c ' ( O  loperator), the high-T 
expansions of flB,F quickly follow. 

The 6 functions ZB,F(~) are also the l functions associated with the boson, fermion 
vacuum loops in T > 0 Euclidean field theory. In general, a i function i ( s  Idiagram) 
can be associated with any Feynman diagram in T>O Euclidean field theory [15] .  
The prescription is to replace propagators ( k ' +  M 2 ) - '  by ( k 2 +  Mz)-i  around closed 
loops, where s is complex. The 'Feynman diagram i-function' i( s I diagram) provides 
ultraviolet regularisation of the diagram when needed. Moreover, from the high- T 
expansion of l ( s /d i ag ram) ,  one obtains the high-T series of the diagram by letting 
s +  1. The calculation of flB,F from ZB3,(s) in the present paper is therefore a specific 
application of a quite general calculational procedure. 

These field theory considerations on the T >  0 spacetime cylinder SI x E "  have a 
straightforward extension to more complicated spacetime manifolds M x E ". The new 
feature encountered is the 5 function associated with the manifold M .  The 5 function 
associated with M = S '  is of course the Riemann i function. For the torus M = 
SI x . . . x SI one encounters Epstein 5 functions, and generalisations of these. Other 
manifolds M with constant curvature will have their own 5 functions iM (s). One can 
always express the 5 function of the operator - D 2 +  M 2  on M in terms of i M ( s )  and 
related 5 functions. The problem of calculating In de t ( -DZ+ M z ) ,  and more generally 
of obtaining Feynman diagram 5 functions on M x E",  can be solved by first calculating 
l M ( s )  and other 5 functions of this type. In § 3 we sketch this problem without 
analysing in detail the 5 functions involved, which would take us well beyond the 
scope of this paper. 

2. Euclidean finite-temperature field theory 

2.1. Vacuum loop zeta functions 

The thermodynamic potentials as., for the relativistic Bose and Fermi gases are 

P R B = l n  de t+ ( -D2+  M z )  (2.1) 

paF= - (d /2)  In de t_( -D2+ M 2 ) .  (2.2) 

Here D, =a ,  -i(A,,, 0) and A. = -ip = constant with p the chemical potential of the 
boson/fermion gas. (For  gauge theories A, can meaningfully be given a constant real 
term as well [9], but we disregard this aspect here.) det, means the functional 
determinant is calculated on the space of functions periodic/antiperiodic around the 
T >  0 spacetime cylinder SI x E "  whose circumference is the inverse temperature 
/3 = 1/ T In (2.2), d is the dimension of the Dirac representation for n + 1 spacetime 
dimensions. 

To calculate the functional determinants (2.1), (2.2) we use the standard i-function 
prescription [ 141 

In det+( -D2+ M 2 )  = -ZL(O) 

In de t - ( -D2+M2)  = -ZL(O). (2.4) 

(2.3) 
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Here Z & ( s )  are the 5 functions 

z , , , ( ~ ) ( M  e')"' 

( 2 . 5 )  

OJ; = 27rm/P, W ,  = 2 n ( m  + j ) / p  are the allowed energies for bosonic, fermionic quan- 
tum fluctuations on the cylinder, and U = /3AO/2rr, v = p M / 2 7 ~  are A o ,  M rescaled to 
be dimensionless parameters. Vis the volume of n-dimensional space. The momentum 
integral in ( 2 . 5 )  is elementary. The factor ( M  exp C)2'  in ( 2 . 5 )  sets the scale of the 5 
functions 2&(s), and C is an unspecified dimensionless scale constant. The value of 
C depends on how regularisation is performed. C appears in a single term in the 
thermodynamic potentials OB,F. We shall fit C to the high-T expansions of OB,, 
previously derived. 

The evaluation of the Matsubara sums in ( 2 . 5 )  is not difficult. Some properties of 
these sums have been obtained previously [16-181.  However, we require the full 
dependence on s, U, U .  In  the boson case this can be conveniently displayed by the 
following power series in U, v :  

2 [ ( m - u ~ Z + U ? ] - \ + n  2 - ( U ? + U Z ) - \ + n / Z  - + Z ( s - n / 2 ,  U, v ) + Z ( s - n / 2 ,  -U, U )  
m = - x  

( 2 . 6 )  
where, using the binomial expansion twice, 

z ( s - n / 2 ,  u , u ) =  [ ( ~ + u ) ~ + u ' ] - ' + " ' ~  
X 

m - l  

U s  - n / 2 +  k )  U 2 k  
z x  

- 
- m = I  e k = O  e ( - ' I k  k ! T ( s - n / 2 )  

T(s - n / 2 +  k )  X I  

k ! T ( s  - n / 2 )  
= ( - l ) k + r  

k = O  r = O  

r ( 2 s  - n + 2 k +  r )  

r !  T ( 2 s  - n + 2 k )  
X u ' d k 5 ( 2 s  - n + 2k  + r )  

C ( s - n / 2 ,  k,  r ) u r v z k 5 ( 2 s - n + 2 k + r ) .  
k , r z O  

( 2 . 7 )  

The last line defines the coefficients C(s - n / 2 ,  k, r ) ,  some of whose properties are 
summarised in the appendix. To reach the final line we have commuted Em through 
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x k  and E r ,  and then evaluated X,,, in terms of the Riemann 5 function 

R e s >  1 .  (2.8) 

That one may freely perform these commutations is rather easy to see. Assume that 
Re s is sufficiently large (i.e. Re s > ( n  + 1 ) / 2 )  that the series defining 5(2s  - n + 2k + r )  
is absolutely convergent. Choose U and U small enough that both binomial series in 
these variables are absolutely convergent. Then all sums can be freely commuted, and 
(2.7) (the final equality) is the result. This formula invoves only functions which are 
known throughout the s plane. Hence it can be used for (or it automatically provides) 
the continuation of Z ( s  - n / 2 ,  U ,  U )  throughout the s plane. So now we know Z ( s  - 
n / 2 ,  U, v )  as a meromorphic function of s. This is generally what the Taylor series 
expansion of a generalised 5 function is able to provide. 

For the fermion sum in (2.5) we have the power series expansion 
X 

C [ ( m  + f -  U)'+ v 2 ] - 7 + n ' 2  - Z ( s - n / 2 , u - + ,  - u ) + Z ( s - n / 2 , - u - f ,  U )  (2.9) 
m=-m 

where Z is the function in (2.7). For comparison with [ 9 ]  it will be convenient to use 
the modified power series expansion 

Z ( s - n / 2 ,  U - f ,  U ) =  C C ( s - n / 2 ,  k, r ) ~ ' u ~ ~ 5 ( 2 s - n + 2 k + r , f )  
k , r s 0  

with C ( s  - n / 2 ,  k, r )  as before and 

(2.10) 

(2.11) 

Comparison with (2.7) shows that the only difference between Z ( s  - n / 2 ,  U, U )  and 
Z ( s  - n / 2 ,  U - f ,  U )  is that 5(s) in the Taylor series gets changed to 5(s, i). 

From now on we assume that n is an odd integer ( n  + 1 = 2 N ) .  The case n = even 
integer is significantly different. 

2.2. Boson gas thermodynamic potential 

To calculate R E ,  we first note that, for infinitesimal s = e, 

ZB( E )  = VT"T" '~  

x { ( U ' +  u 2 ) - F + n ' '  + Z ( E - H / ~ , U ,  u ) + Z ( ~ - n / 2 , - u , u ) }  (2.12) 
where due  to the factor l / I ' ( e )  = E, only the singular terms in the curly bracket 
contribute. These terms come from the pole in the Riemann 6 function 5(2s - n +2k  + r )  
at 2k+ r = n + 1 in (2.7); thus 

Z ( ~ - n / 2 ,  U ,  U ) =  - + y  Z p o i e ( ~ ) + P , B ( ~ ,  u )+Te(u ,  ~ ) + O ( E )  (2.13) 
i 2 l E  1 

where (see the appendix) 

Zpo le (u )=  C ( - n / 2 ,  k, r)u'vZk 
Z k + r = n + l  

= C ( - n / 2 ,  ( n  + 1 ) / 2 ,  O)u"+' 

(2.14) 
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pIB(u ,  U)= C C ( - n / 2 ,  k, r ) ~ ~ u ~ ~ r ( - n + 2 k + r )  (2.15) 
2 k + r < n + l  

rB(u, U )  = ~ ( - n / 2 ,  k, r ) u ' ~ ~ ~ r ( - n  + 2 k +  r). (2.16) 

In  (2.13) we have used 4 ' ( 1 + 2 ~ ) =  1 / 2 ~ + y + O ( ~ ) .  Note that all of the coefficients 
C ( - n / 2 ,  k, r )  are finite. As expected, there is no singularity in Z,(S) at  s =0,  

2 k + r > n + l  

z,(o) = V T ~ ~ T ~ / ~ ~ ( - ~ / ~ ) Z ~ , ~ ~ ( U ) .  (2.17) 

For the calculation of Zl,(O) we need 

d 1 1 
- - ( E  - n/2 ,  U, U )  = - ~ Z p , , , + - { Z p , l , [ ~ ( ~ ) - ~ ( - n / ~ ) ] + ~ 2 ( u ,  u)}+regular terms 
d s  2E 2E 

(2.18) 

where 

d 
Pz(u,  U)= 1 - C ( - n / 2 ,  k, r)u'u2'. 

2 k + r = n + l  d s  
(2.19) 

k z 0 , r z l  

The regular terms in (2.18) d o  not contribute to Zg(0) .  Now we know all terms in the 
derivative of the 4' function 

x [ [ $ ( E  - n / 2 ) -  $ ( ~ ) + 2 C + 2  l n ( P M / 2 ~ ) ]  

x [ ( u 2 +  u 2 ) - F + n / 2  + Z( E - n/2,  U, U )  + Z (  E - n/2 ,  -U, U)] 

d 
d s  

I ~ ( u ' + u ~ ) + - z ( E - ~ / ~ ,  U, U )  

d 
d s  

+- Z ( E  - n / 2 ,  -U, U )  (2.20) 

where $(z)  = r ' ( z ) / r ( z )  and $ ( E )  = - 1 / ~  - - ~ + O ( E ) .  Again the overall factor l / r ( E )  
singles out the 1 / ~  terms inside the curly bracket. There are two 1 / ~ '  terms inside the 
bracket which must and d o  cancel. The result for Cl ,  is 

flB(M, p )  = - V T ~ " ~ ~ ' * ~ ( - ~ / ~ ) { ( U ~ + U ~ ) ~ ' ~ + ~ ~ ( ; ~ ,  u)+2plB(u,  u ) + 2 F B ( u ,  U )  

+ Zpo,e(u)[cL(f) + 3 7 + 2 C  + 2  I n ( P M I 2 7 ) I )  (2.21) 

where the tilde means symmetrisation in U - U ;  

k . m z O  

x u z m u Z k l ( - n + 2 k + 2 m )  (2.22) 

(2.23) 
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U 2 m  2 k  
U 

X- l( - n  + 2 k  + 2 m ) .  
k ! ( 2 m ) !  

( 2 . 2 4 )  

We now have to show that ( 2 . 2 1 )  agrees with previously derived results for 0,. 
(1) The term containing ( U ~ + U * ) " ' ~  is the one arising from series commutation in 

the other (-function approach [9-111. We see that this term-an obvious one in the 
present derivation-is (with n + 1 = 2 N )  

A i l B  = - V ~ ' " T ' ' ' * I ' ( - ~ / ~ ) ( U ~ +  u * ) " / ~  

( 2 . 2 5 )  

in agreement with [ 6 , 1 0 ] .  We remind the reader that this term enforces the constraint 
M 2 - p 2 2 0  on the bosonic chemical potential [43. 

( 2 )  Another easily distinguished part of the formula is the contribution from the 
square bracket in ( 2 . 2 1 ) .  Again setting n + 1 = 2 N  ( N  = s in the notation of [9]) we 
have for this contribution 

-VT"+'.rr"/2r(-n/2)Zp,,,(~)[cL(f)+3y+2 I n ( p M / 2 ~ ) + 2 C ]  

= ( - , ) N + l -  2 E N  (n)'"( - In E+ y s  c).  ( 2 . 2 6 )  

Comparing this with ( 5 . 2 )  of [9] (note there is an overall factor T - ~  missing in that 
formula) we find complete agreement, i f  the constant C has the value 

N 1  

n 
( 2 . 2 7 )  

Within the context of the present derivation, C appears to be arbitrary. Recall that 
this constant entered via the normalisation in ( 2 . 5 ) .  Because ZB(0) # 0 the determinant 
must depend on C, but there is no  obvious way to pin down the value of C other than 
by the argument just given. 

(3) Continuing our comparison of ( 2 . 2 1 )  with results derived previously, we next 
identify the polynomial contribution to RB-caIled PB( M, p )  in [9]-which here comes 
from F 2 + 2 P , .  The precise connection is 

c=-; c -. 

where again n + 1 = 2 N  and 

One finds in the physical case of three spatial dimensions ( n  = 3) 

FlB(u, v ) = & - ~ $ ( 2 u Z + v 2 )  

&U, U)' - ; ( u 4 + 3 u * U * )  

and quickly verifies that the correct polynomial contribution to R, is obtained. 

( 2 . 2 8 )  

( 2 . 2 9 )  
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(4) All that remains is the infinite series contribution to fIt,-called S,(M, p )  in 
[9]. This contribution comes from r,( U, U ) :  

where 

(2.30) 

h+c>O 

(26  + 2c)! 
b!( N +  6)!2(2c)! 

X (( 1 + 26 + 2c). 

Equation (2.30) is actually quite easy to verify. 

2.3. Fermi gas  thermodynamic potential 

With minor changes, the preceding calculation gives us R F  as well. Because 

1 
(( 1 +2e, a )  =--$(a) + O ( E )  

2e 

equation (2.13) becomes now 

~ ( e - n / 2 ,  U - f ,  U ) =  --$(;) Z p o I e ( u ) + f P I F ( ~ ,  U ) + r , ( u ,  u ) + O ( e )  (2.31) 

where $(f) = - y - 2  In 2 and zpOle(u) is the same as before. f , F ( u ,  U )  and r F ( U ,  U )  are 
defined by (2.15) and (2.16) with ((s, $) replacing ((s) in these formulae. Note that 
(2.18) can be used unchanged. 

fIF(M, p )  = V(d/2)Tn+'.ir"'*T(-n/2) 

(2le ) 

The final result for the thermodynamic potential RF is 

x {2i, ,(  U, U )  + i2( U, U )  + 2FF(u, U )  + 4 In 2 Zpole( U )  

+Zpoie(~)[2 I ~ ( P M / ~ T ) + ~ ~ + ~ C ) I .  (2.32) 

Let us compare this expression term by term with the previous result. 

~ d v T " " ~ n ' 2 ~ ( - n / 2 ) 2 Z , , l , ( v ) [ l n ( ~ ~ / 4 ~ )  + y + Cl 

(1) The contribution from the square bracket in (2.32) is (choosing n + 1 = 2 N )  

= (-1)NdVT2N(pM/2)2N(N!5?N)-1[ln(pM/45?)+y+C]. (2.33) 
With the same value (2.27) for C, this agrees with equation (4.11) of [9]. (The latter 
equation has (i) a factor 7 ~ - ~  missing and (ii) a minus sign missing before its square 
bracket.) 

tdVT"+1rr"'2r(-n/2)[2~,~(u,  U ) + i * ( U ,  U)]= - V T Z N 2 d P ~ ( M ,  p ) .  

In  four spacetime dimensions 

(2) The polynomial contribution to CIF is 

(2.34) 

(2.35) p ")=-"+'u2+'  2 
I F  9 8 120 8 16U 

(for see (2.29)) and  one easily verifies that (2.34) correctly gives PF(M, p ) .  



5358 A Actor 

where in agreement with [9] 

(1 -21+2b+2c ) 5 (  1 +2b +2c). 
(26 +2c)! 

X 
6 ! ( N  + 6) ! 2(2c)! 

(2.36) 

(2.37) 

Equation (2.37) is easily verified. 

3. Thermodynamic potentials on M x E" 

The calculation of thermodynamic potentials on spacetime toroidal manifolds T N  x E" 
can be done very much like the preceding calculations on S' x E".  Here we indicate 
the main steps, without evaluation of the toroidal (Epstein) 5 functions involved. 
(Some related discussions are [19-211.) The same approach is also well suited for 
dealing with other manifolds, e.g. SN x E",  as we briefly describe at the end of the 
section. 

The 6 function for the vacuum scalar loop on T N  x E "  is 

ZB(s)(Me')-'' =--- J d"k [ (U" , ,  - B1)'+. . . + ( w &  - BN)'+ k 2 +  M2]-' (3.1) 
(2.rr)" 

where m, is any integer, U",, = 2.rrm,/p,, p, is the circumference of the ith circle in T N ,  
and i = 1,2 , .  . . , N. B, is a constant Abelian gauge potential which enters non-trivially 
(as a kind of generalised complex chemical potential). Just as in (2.5), the momentum 
integral leads to 

(3.2) 

l N ( s )  3 c [(  m ,  - U,)'+ (a2m2 - U,)'+. . . + (aN" - uN)'+ u ~ ] - ~ + ~ / '  (3.3) 

where U, =P1BI/2rr, u=pIM/2.rr ,  a, =pI/pI and p,  is playing the role of inverse 
temperature in the notation. What remains is the evaluation of the l function (3.3)-by 
far the most difficult part of the problem. Once this has been accomplished, the 
evaluation of the thermodynamic potential (2.1) is straightforward. 

In the limit of M = 0, a, = 1 and u, = 0 or f ,  the 5 function (3.3) is an Epstein 5 
function [22] which in many cases [23] has a known expression in terms of Riemann- 
type functions. Z , ( s )  is then known, and RB can be obtained immediately. 

More general cases involving one or more of M > 0, a, # 1 and arbitrary U, have 
received little attention because the function (3.3) is unknown for these cases. To 
obtain a solution like the one in 5 2 for N = 1 we clearly need the power series expansion 
of IN(s) in U' and U,. Known results on Epstein 5 functions do  not provide these 
power series. Recently [24], a method for finding such expansions has been developed. 

m, 
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We hope to provide a full calculation of the power series of Z , ( S ) ,  and therefore OB, 
in the near future. This is too lengthy to discuss in more detail here. 

For manifolds M x E” with non-toroidal compactification, one needs to know the 
eigenvalues A,,, of the Laplacian 0 = 8: +. . .+a’, on M, and the multiplicities g,,, of 
these eigenvalues. Then the function for the scalar vacuum loop is defined by 

Z , ( s ) (  Me‘”’’ = g m ( A ,  + k 2 +  M2)-’ (3.4) 

The integral is readily done to express Z , ( S )  in a form like ( 3 . 2 ) ,  involving the 6 function 

g,(A,,, + M2)”+“” 
m 

(3.5) 

By dimensional reasoning A,,, = h , / a 2 ,  where a -length and  h ,  is typically a poly- 
nomial in m, as is g, .  Thus equation (3.5) defines a 5 function of a type encountered 
in many other problems, which can be calculated. This will yield Z , ( S )  and RB. 
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Appendix 

We shall need some properties of the constants 

r ( s - n / 2 + k ) r ( 2 s - n + 2 k + r )  
k ! r ! T ( s -  n / 2 ) r ( 2 s  - n + 2 k )  

C ( s - n / 2 ,  k,  r ) = ( - l ) k + ‘  

defined in ( 2 . 7 )  of the text. These properties are 

C ( - n / 2 ,  k,  r )  = 0 2 k + r > n + l  2 k ~  n 

r ( - n / 2 +  k ) ( n  - 2 k ) !  
r ( - n / 2 ) k ! r ! ( n  - 2 k - r ) !  

C ( - n / 2 ,  k,  r )  = ( - l ) k  2 k + r < n + 1  

d 
- C ( - n / 2 ,  k, 0) = C ( - n / 2 ,  k,  0) 
d s  

2 k + r = n + 1  
2 r ( - n / 2 +  k )  

(A51  
d 
- C ( - n / 2 ,  k,  r )  = ( - l ) k + ’  - 
d s  r r ( - n / 2 ) k !  ’ 



5360 A Actor 

References 

[ l ]  Dolan L and Jackiw R 1974 Phys. Rev. D 9 3320 
[2] Beckmann R, Karsch F and Miller D E 1979 Phys. Rev. Left. 43 1277 
[3] Araglo de Carvalho C and Goulert Rosa S J r  1980 J. Phys. A :  Math. Gen. 3 3233 
[4] Haber H E and Weldon H A 1981 Phys. Rev. Left. 46 1497; 1982 Phys. Rev. D 25 502 
[SI Eke H-T, Greiner W and Rafelski J 1980 J. Phys. G: Nucl Phys. 6 L149 
[6] Haber H E and Weldon H A 1982 J. Math. Phys. 23 1852 
[7] Braden H W 1982 Phys. Rev. D 25 1028 
[SI Actor A 1985 Phys. Left. 157B 53 
[9] Actor A 1986 Nucl. Phys. B 265 [FSlS] 689 

[ lo]  Weldon H A 1986 Nucl. Phys. B 270 [FS16] 79 
[ 1 I ]  Actor A 1987 Fortschr. Phys. to be published 
[12] Landsmann N P and van Weert Ch G 1987 Phys. Rep 145 141 
[I31 Camperi M F and Gamboa-Saravi R E 1986 Zeta Function Regularization ofFinite Temperature Field 

[14] Ray D and Singer I 1971 Adu. Marh. 7 145 
[15] Actor A 1987 Penn Stare preprinr 
[16] Ghika G and Visinescu M 1978 Nuovo Cimento 46A 25 
[I71 Ford L H 1980 Phvs. Rev. D 21 933 
[18] Toms D J 1980 Phys. Rev. D 21 2805 
[I91 Rubin M A and Roth B D 1983 Nucl. Phys. B 226 444; 1983 Phys. Lett. 127B 55 
[20] Applequist T, Chodos A and Myers E 1983 Phys. Left. 127B 51 
[21] Goncharov Yu P and Bytsenko A A 1986 Nucl. Phys. B 271 726 
[22] Epstein P 1903 Math. Ann. 56 615; 1907 Math. Ann. 63 205 
[23] Zucker I J 1974 J. Phys. A: Marh., Nucl. Gen. 7 1568; 1975 J. Phys. A: Math. Gen. 8 1734 
[24] Actor A 1987 in preparation 

Theories, Univ. Nacional de la Plata preprint 


